6

Multilingual Analysis and Visualization of Bibliographic Metadata and Texts With the AVOBMAT Research Tool Journal of Open Humanities Data

DATA PAPER

]u[ubiquity press

RÓBERT PÉTER D ZSOLT SZÁNTÓ D ZOLTÁN BIACSI D GÁBOR BEREND D VILMOS BILICKI D

*Author affiliations can be found in the back matter of this article

ABSTRACT

The objective of this paper is to introduce the workflow of the AVOBMAT (Analysis and Visualization of Bibliographic Metadata and Texts) multilingual research tool, which enables researchers to critically analyse bibliographic data and texts at scale with the help of data-driven methods supported by Natural Language Processing (NLP) techniques. This exploratory tool offers a range of dynamic text and data mining tasks and provides interactive parameter tuning and control from the pre-processing to the analytical stages. It can pre-process, analyse and (semantically) enrich a vast number of texts and metadata in several languages due to its scalable infrastructure. The implemented analytical and visualization tools provide close and distant reading of texts and bibliographic data. It combines bibliographic data and NLP research methods in one integrated, interactive, user-friendly web application, allowing users to ask complex research questions.

CORRESPONDING AUTHOR: Róbert Péter

Institute of English and American Studies, University of Szeged, Szeged, Hungary robert.peter@ieas-szeged.hu

KEYWORDS:

data analysis; bibliographic data; content analysis; linguistic analysis; modelling; databases; multilingualism

TO CITE THIS ARTICLE:

Péter, R., Szántó, Z., Biacsi, Z., Berend, G., & Bilicki, V. (2024). Multilingual Analysis and Visualization of Bibliographic Metadata and Texts With the AVOBMAT Research Tool. *Journal of Open Humanities Data*, 10: 23, pp. 1–10. DOI: https://doi.org/10.5334/ johd.175

THE PAPER

The aim of this paper is to introduce the workflow of the AVOBMAT (Analysis and Visualization of Bibliographic Metadata and Texts) multilingual research tool. (Péter et al., 2020; Péter et al., 2022).

1. UPLOADING THE CORPUS

Users can upload metadata and texts in several formats: Zotero collections in CSV and RDF formats and EPrints (library) repositories as XML files (metadata or metadata with links to the full texts). AVOBMAT can also import full texts, for example, by uploading a zip file of documents along with a CSV of the metadata. Documents from external databases can be imported by providing URLs to the full texts in the CSV. It can process texts in several formats since the Apache Tika library converts them to plain text.

2. CLEANING THE CORPUS

AVOBMAT provides several options for cleaning the text corpus. For example, users can

- remove non-alphabetical tokens (e.g. of OCR-ed texts);
- upload a list of words and replace words (e.g. synonyms) and characters;
- make use of regular expressions.

A context filter is implemented to keep the context of a keyword or keywords and remove all other parts of the document.

3. CONFIGURING THE PARAMETERS

Users can create different configurations for each analysis where the outcome depends on the language of the texts. There are two ways to assign a language to a document: researchers can manually select a language for the full dataset (52 languages) or choose the automatic language detection option. As for the latter, the system will choose a language independently for each document. Based on the language, it offers stopword and punctuation, filtering drawing on the spaCy library, and lemmatization (SpaCy Models and Languages). Extra stopword and punctuation lists can also be added. SpaCy language models are used for lemmatization, with LemmaGen models being used for languages not supported by spaCy (Juršic et al., 2010).

The following pre-processing options are implemented:

- choose spaCy language model (small, large or transformer);
- make text lowercase;
- remove numbers;
- set minimal character length.

The metadata enrichment includes the identification of the gender of the authors (male, female, unknown gender or without author) and automatic language detection. Users can also upload a list of male and female first names, supplementing and replacing the ones found in the dictionaries of the programme.

As for topic modelling, the user also has the option to separate the documents into sections of equal size. Users can specify the so-called window length for certain lexical diversity analyses (MSTTR, MATTR).

4. VALIDATING THE SETTINGS

AVOBMAT cleans and pre-processes a small sample of the uploaded database where the user can check if the set parameters are appropriate. The settings can be saved in a template if the configuration is acceptable. If the parameters need to be fine-tuned, the user can start the cleaning and configuration process again. AVOBMAT identifies missing values and gaps in the metadata. Péter et al. Journal of Open Humanities Data DOI: 10.5334/johd.175

5. FILTERING THE CORPUS

The user can search and filter the metadata and texts in faceted, advanced and commandline modes and perform all the subsequent analyses on the filtered dataset (Figure 1). The NLP analyses of the documents semantically enrich the metadata. For example, the recognized named entities such as person appear in all types of searches and the user can search for (disambiguated) named entities in 16 languages. The tool supports fuzzy and proximity searches. Péter et al. Journal of Open Humanities Data DOI: 10.5334/johd.175

AVOBMAT Databases Templates	Search & Metadata Filter visualisations	NGram Topic Viewer modeling	Frequency Analysis	Keyword in Context	Lexical diversity	Named entity recognition	Part-of-speech tagging	Nyugat Test User	Log out
Pick a date or range: On Before After Between Search		Advanced search Field: Person (NER) ~ Field: Location (NER) ~	Search term: Shakespeare Search term: London	۲	Fuzzy: ① 0 and O or Fuzzy: 0	Proximity: ① 1 O not Proximity: 1	Order: ① Order:		_
Publication Year : 1941 (245) 1940 (308) 1939 (426) 1938 (491) 1937 (510) Show more		+ Search Clear All Commandline searc YR:[2017 TO 2020] AND (Search	h (Lucene query): (FT:chloroquine OR FT:I	D vermectin) AND A	\B:coronavirus*				
Authors: Schopflin Aladár (809) Babits Mihály (799) Ady Endre (690) MISSING_VALUE (601) Kosztolányi Dezső (591) Show more		Sort by: Publication date ascendi Number of documents: 2 Publication Year : 1908 Authors: Ignotus Publication Title: Nyuga Title: Kelet népe Date: 01.01.1908	ng 1374						¥

6. INTERACTIVE METADATA ANALYSIS

Having filtered the uploaded databases and selected the metadata field(s) to be explored (Figure 2), the user can, among other actions,

- analyse and visualize the bibliographic data chronologically in line and area charts in normalized and aggregated formats (Figure 4);
- create an interactive network analysis of the metadata fields (Figure 3);
- make pie, horizontal and vertical bar charts.

Visualize the (filtered)	collection by selecti	ing the type of chart and the metadata field(s).
Choose diagram type		
Network		•
Choose metadata field for visualizat	number of top items per metafield	
Authors -	20	_
Choose metadata field for visualizat	number of top items per metafield	
Bookseller -	20	_
Chasse metadata field for viewelizat	number of top items per metafield	
Dublichor -	20	
	20	—
Show visualization Cancel		
Callee		

Figure 1 AVOBMAT graphical interface.

Figure 2 Interactive metadata visualization setting.

Figure 3 Network analysis of authors, publishers and booksellers involved in the publications of 18th-century books concerning Freemasonry with a particular focus on James Anderson (author).

7. INTERACTIVE CONTENT ANALYSIS

The following options are available for interactive content analysis.

7.1. N-GRAM VIEWER

This diachronic analysis of texts shows the yearly count of the specified n-grams generated at the pre-processing stage in aggregated and normalized views (Figure 5).

7.2. FREQUENCY ANALYSIS

Frequency analyses and word clouds can be efficient tools to highlight the prominent terms in a corpus. The significant text analytical tool shows what differentiates a subset of the documents from others using four different metrics (e.g. Chi square) (Manning et al., 2009; Rudi and Vitányi, 2007; see Significant text aggregation). The TagSphere analysis enables users to investigate the context of a word by creating tag clouds showing the co-occurring words of a specified search term within a specified word distance (Figures 6 and 7) (Jänicke and Scheuermann, 2017). Words can be interactively removed from the clouds. Bar chart versions of the analyses present the applied scores and frequencies.

Figure 4 Chronological distribution of the detected languages of the 53411 articles and books in the University of Szeged publication repository.

say say come physical fiel place know camerlegno say say come physical field stare place field stare know camerlegno say say come physical field stare know camerlegno say say come physical field stare know camerlegno say camerlegno

Figure 5 N-gram viewer. Distribution of "katolikus egyház" [Catholic church], "református egyház" [Reformed church], "evangélikus egyház" [Lutheran church] in the *Délmagyarország* daily newspaper, 1911–2009.

Figure 6 TagSphere analysis. Dan Brown's novels. Keyword: god, word distance: 4 (shown in different colours), minimum word frequency: 7, lemmatized texts, stopwords removed.

Vord	Word distance	Count	96	
god	0	924	100.00%	
oh	1	32	3.46%	
langdon	1	28	3.03%	
man	1	27	<mark>2</mark> .92%	
	1	22	2.38%	
believe	1	21	2.27%	
work	1	20	2.16%	
hand	1	19	2.06%	
think	1	18	1.95%	
help	1	17	1.84%	
love	1	17	1.84%	
create	1	16	1.73%	
say	1	15	1.62%	
iimage 🛛	1	15	1.62%	
sake	1	15	1.62%	
god	1	14	1.52%	
house	1	13	1.41%	
true	1	12	1.30%	
pray	1	11	1.19%	
know	1	10	1.08%	
come	1	10	1.08%	
science	1	10	1.08%	
face	1	9	0.97%	

Figure 7 The same TagSphere analysis as in Figure 6. Bar chart view with statistical data.

7.3. LEXICAL DIVERSITY

AVOBMAT calculates the lexical diversity of texts according to eight different metrics: Type-token ratio (TTR), Guiraud, Herdan, Mass TTR, Mean segmental TTR, Moving average TTR, Measure of Textual Lexical Diversity and Hypergeometric distribution Diversity (Figure 8) (Covington and McFall, 2010; McCarthy and Jarvis, 2010; Torruella and Capsada, 2013).

Authors #Toke... Pu... Title #Types TTR Root TTR Herdan's C Mass TTR MSTTR MATTR HDD MTLD 1997 Harry Potter and the Philosopher's Stone Joanne ... 77591 0.07310126 20.362474 0.76766485 0.047514137 0.82715666 0.8837512 5672 0.82715666 104.93297 1998 Harry Potter and the Chamber of Secrets Joanne ... 85366 6795 0.079598434 23.256641 0.77711785 0.045197584 0.8330404 0.8330404 0.88406277 109.88616 0.82876277 1999 Harry Potter and the Prisoner of Azkaban Joanne ... 107504 7336 0.068239324 22.374174 0.7682634 0.046057854 0.82876277 0.8837456 106.605194 2000 Harry Potter and the Goblet of Fire 191045 10037 0.05253736 22.963394 0.75771654 0.045877147 0.8259005 0.8259005 0.8836171 103.66941 Harry Potter and the Order of the Phoe... Joanne ... 257217 0.046252776 23.457819 0.7532739 0.04560304 0.83290046 0.83290046 0.88663274 110.80274 2003 11897
 Harry Potter and the Half-Blood Prince
 Joanne _
 169681
 10079
 0.059399698
 24.468134
 0.76552546

 Harry Potter and the Deathly Hallows
 Joanne _
 198613
 10874
 0.05474969
 24.399757
 0.7618693
 2005 0.04483575 0.8324138 0.8324138 0.8841736 108.779274 2007 Harry Potter and the Deathly Hallows 0.04494722 0.823142 0.823142 0.87844294 102.54282

Figure 8 Lexical diversity metrics in J. K. Rowling's Harry Potter novels.

Péter et al.

Journal of Open Humanities Data

DOI: 10.5334/johd.175

7.4. KEYWORD-IN-CONTEXT

The keyword-in-context function supports the close reading of texts (Figure 9).

Authors	Title	Publicatio	Text
Joanne Rowling	Harry Potter and the Philosopher's Stone	1997	note that the forest on the grounds is forbidden to all pupils. And a few of our older students would do well to remember that as well." Dumbledore's twinkling eyes flashed in the direction of the Weasley twins. "I have also been asked by Mr. Filch, the caretaker, to remind you all that no <i>magic</i> should be used between classes in th corridors. "Quidditch trials will be held in the second week of the term. Anyone interested in playing for their House teams should contact Madam Hooch. "And finally, I must tell you that this year, the third-floor corridor on the right-hand side i out
Joanne Rowling	Harry Potter and the Philosopher's Stone	1997	Everybody finished the song at different times. At last, only the Weasley twins were left singing along to a very slow funeral march. Dumbledore conducted their last few lines with his wand and when they had finished, he was one of those who clapped loudest. "Ah, music," he said, wiping his eyes. "A magic beyond all we do here! And now, bedtime. Off you trot!" The Gryffindor first years followed Percy through the chattering crowds, out of the Great Hall, and up the marble staircase. Harry's legs were like lead again, but only because he was so tired and full of food. He was too sleepy even to be
Joanne Rowling	Harry Potter and the Philosopher's Stone	1997	anyone (except perhaps the Weasley twins) and could pop up as suddenly as any of the ghosts. The students all hated him, and it was the dearest ambition of many to give Mrs. Norris a good kick. And then, once you had managed to find them, there were the classes themselves. There was a lot more to <i>magic</i> , as Harry quickly found out, than waving your wand and saying a few funny words. They had to study the night skies through their telescopes every Wednesday at midnight and learn the names of different stars and the movements of the planets. Three times a week they

Figure 9 Keyword-in-context. The word "magic" in J. K. Rowling's *Harry Potter and the Philosopher's Stone*.

7.5. TOPIC MODELLING

The Latent Dirichlet Allocation function calculates and graphically represents topic models (Blei et al., 2003). It shows the most relevant words and most relevant documents related to each topic, visualizes the distribution of these topics chronologically, highlights the correlation of different topics and exports the results in various formats (Figures 10 and 11). It has the following parameters: the minimum number of occurrences of words, the number of topics and iterations, per-document topic distribution (alpha), and per-topic word distribution (beta) parameters. Users can interactively remove stopwords.

Run 50 iterations Completed iterations: 50		Topics: 10	Alpha: 0,1	Beta: 0,01
[0] eye key face open send get code wait tankado break	Topic Documents Topic Correlations Time Series			Vocabulary Downloads
 word beneath realize move floor woman early open see whisper 	Documents are sorted by their proportion of the currently selected topic, biased to prefer longer doc	uments.		
[2] nasa president ice corky meteorite tench senator pickering delta white	[35%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 19)			
[3] ambra fache tonight ávila grail bishop valdespino church palace feel	[34%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 25)			
[4] feel line find watch right turn minute number hold hand	[32%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 29)			
[5] pyramid bellamy ancient room eye tonight	[32%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 7)			
brother masonic great agent	[32%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 17)			
[6] world year new work ask computer life time question call	[32%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 36)			
[7] door eye think turn hale head take floor moment light	[31%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 33)			
[8] sienna water dante zobrist mask provost eye death world head	[31%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 24)			
[9] god church father vatican guard think feel science illuminati come	[30%] Dan Brown: The Lost Symbol, 01.01.2009 (Chunk 11)			

Figure 10 Topic modelling of Dan Brown's novels.

Figure 11 Topic modelling of the *Szegedi Egyetem* [University of Szeged] Magazin, 1953–2011.

7.6. PART-OF-SPEECH TAGGING

AVOBMAT identifies the part-of-speech tags currently in 16 languages by using the spaCy language models. It produces different interactive visualizations and statistical tables of the results (Figures 12 and 13).

Word Form	Lemma	Part-of-speech Tag	Relative Frequency	Count ↓	Documents
symbols	symbol	NOUN	0.001437455	187	7
fire	fire	NOUN	0.001437455	187	7
considered	consider	VERB	0.001437455	187	7
carefully	carefully	ADVERB	0.001437455	187	7
plane	plane	NOUN	0.001429768	186	7
killed	kill	VERB	0.001429768	186	7
bottom	bottom	NOUN	0.001422081	185	7
search	search	NOUN	0.001422081	185	7
simple	simple	ADJECTIVE	0.001422081	185	7
different	different	ADJECTIVE	0.001422081	185	7
things	thing	NOUN	0.001414395	184	7
laughed	laugh	VERB	0.001414395	184	7
leave	leave	VERB	0.001414395	184	7
hung	hang	VERB	0.001414395	184	7
shouted	shout	VERB	0.001414395	184	7

Pu	Title	Authors	Adjective	Adposition	Adverb
1997	Harry Potter and the Philosopher's Stone	Joanne Rowling	Count: 4387 Relative frequency: 4.41%	Count: 7875 Relative frequency: 7.91%	Count: 5219 Relative frequency: 5.249
1998	Harry Potter and the Chamber of Secrets	Joanne Rowling	Count: 5114 Relative frequency: 4.66%	Count: 8755 Relative frequency: 7.97%	Count: 5772 Relative frequency: 5.269
1999	Harry Potter and the Prisoner of Azkaban	Joanne Rowling	Count: 5953 Relative frequency: 4.27%	Count: 11226 Relative frequency: 8.06%	Count: 7382 Relative frequency: 5.309
2000	Harry Potter and the Goblet of Fire	Joanne Rowling	Count: 10656 Relative frequency: 4.37%	Count: 20154 Relative frequency: 8.27%	Count: 13434 Relative frequency: 5.519
2003	Harry Potter and the Order of the Phoenix	Joanne Rowling	Count: 14597 Relative frequency: 4.45%	Count: 26911 Relative frequency: 8.20%	Count: 18614 Relative frequency: 5.679
2005	Harry Potter and the Half-Blood Prince	Joanne Rowling	Count: 10247 Relative frequency: 4.71%	Count: 16798 Relative frequency: 7.71%	Count: 11818 Relative frequency: 5.439
2007	Harry Potter and the Deathly Hallows	Joanne Rowling	Count: 11732 Relative frequency: 4.64%	Count: 20084 Relative frequency: 7.94%	Count: 12105 Relative frequency: 4,799

Péter et al. Journal of Open Humanities Data DOI: 10.5334/johd.175

Figure 13 Part-of-speech analysis of J. K. Rowling's Harry Potter novels. Statistical results.

7.7. NAMED ENTITY RECOGNITION, DISAMBIGUATION AND LINKING

It identifies named entities such as persons and places currently in 16 languages. The number and type of named entities differ by language, as seen in Table 1. AVOBMAT creates different statistical tables and visualization of these entities. The latter are displayed in full-text view. As for the English language, it disambiguates the entities and links them to Wikidata, VIAF and ISNI (Figure 14).

Language model	Person	Organization	Location	Miscellaneous	Language	Work of art	Geopolitical entity	National or religious group	Date	Ordinal number	Product	Quantity	Time	Money	Infrastructure	Cardinal number	Event	Law	Percent	Period	Movement	Phone	Pet name	Title affix
Chinese	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
Danish	Х	Х	Х	Х																				
Dutch	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
English	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
French	Х	Х	Х	Х																				
German	Х	Х	Х	х																				
Greek	Х	Х	Х				Х				Х						Х							
Italian	Х	Х	Х		х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х		Х	Х	Х	Х
Japanese	Х	Х	Х	Х																				
Lithuanian	Х	Х	Х				Х				Х		Х											
Hungarian	Х	Х	Х	Х																				
Norwegian Bokmål	Х	Х	Х				Х		х				Х											
Polish	Х	Х	Х	Х																				
Portuguese	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х			Х				
Romanian	Х	Х	Х	Х																				
Spanish	Х	Х	Х	Х																				
Multi-language	х	х	х	х																				

Table 1Named entityrecognition in differentlanguages.

student had used his barbed cilice belt more	often than the recommended two hours TIME a day and had given himse	If a near lethal infection. In Boston GPE LOCATION
signed over his entire life savings to Opus D	ei ORGANIZATION before attempting suicide. Misguided sheep, Aringaros	a PERSON thought, his heart going out to them. Of c
publicized trial of FBI ORGANIZATION Spy	Robert Hanssen PERSON , who, in addition to being a prominent member of	f <u>Opus Dei</u> ORGANIZATION , had turned out to be a
rigged hidden video cameras in his own bedr	Robert Hanssen PERSON	ime of a devout Catholic NATIONAL OR REL GROUPS
helped spawn the new watch group known a:	"Robert Philip Hanssen" (born April 18, 1944) is an American former [[Federal Bureau of Investigation]] (FBI) [[double agent]] who spied for [[Soviet Union]Soviet]]). The group's popular website-www.odan.org-rel
ORGANIZATION members who warned of the	and Russian intelligence services against the United States from 1979 to 2001. His [Conjectual was described by the [United States from 1979 to 2001. His	as "God's Mafia" and "the Cult of Christ." We fear 1
wondering if these critics had any idea how r	[[esplorage]] was described by the [[onited states bepartment of Justice[Department of Justice]] as "possibly the worst intelligence disaster in U.S.	II endorsement and blessing of the Vatican INFRAS
prelature of the Pope himself. Recently, how	sentences]] without parole at [[ADX Florence]], a federal [[supermax prison]] near	ly more powerful than the media an unexpected fc
hide. Five months ago DATE , the kaleido	[[Florence, Colorado]]. Wikidata	from the blow. "They know not the war they have be
out the plane's window at the darkness of the	ISNI	f his awkward face-dark and oblong, dominated by
Spain GPE LOCATION when he was a young	VIAF	s was a world of the soul, not of the flesh. As the je
cell phone in Aringarosa PERSON 's cassoo	sk began vibrating in silent ring mode. Despite airline regulations prohibiting	the use of cell phones during flights, Aringarosa

Figure 14 Named entity recognition and linking in Dan Brown's *Da Vinci Code*.

8

8. EXPORT RESULTS, CONFIGURATIONS AND PUBLICIZE DATABASES

The reproducibility and transparency of the experiments and results using the tool are enhanced by the ability to import and export the parameter settings in JSON format. The users can create templates for the pre-processing and analytical functions on the graphical interface. The tabular statistical data and visualizations of the performed analyses can be saved in PNG and different CSV formats, including a document-topic graph file for Gephi in case of topic modelling. The latter enables researchers to use the generated data in other software. Users can share and make their databases public.

FUNDING INFORMATION

The creation of the AVOBMAT software was partially funded by the EFOP-3.6.1-16-2016-00008, EFOP-3.6.3-VEKOP-16-2017-0002, 2019-1.2.1-EGYETEMI-ÖKO-2019-00018 and the Humanities and Social Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Róbert Péter: Supervision, Conceptualization, methodology, funding acquisition: Writing – review & editing

Zsolt Szántó: Software, Methodology

Zoltán Biacsi: Software

Gábor Berend: Supervision, Methodology

Vilmos Bilicki: Supervision, Methodology

AUTHOR AFFILIATIONS

Róbert Péter IDorcid.org/0000-0002-7972-4751Institute of English and American Studies, University of Szeged, Szeged, HungaryZsolt Szántó IDorcid.org/0000-0002-8924-206XMTA-SZTE Research Group on Artificial Intelligence, University of Szeged, Szeged, HungaryZoltán Biacsi IDorcid.org/0009-0000-7204-2865Department of Software Engineering, University of Szeged, Szeged, HungaryGábor Berend IDorcid.org/0000-0002-3845-4978MTA-SZTE Research Group on Artificial Intelligence, University of Szeged, Szeged, HungaryVilmos Bilicki IDorcid.org/0000-0002-7793-2661Department of Software Engineering, University of Szeged, Szeged, Hungary

REFERENCES

Blei, D. M., Ng, Y. A., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.

- Covington, M. A., & McFall, J. D. (2010). Cutting the Gordian Knot: the Moving-Average Type-Token Ratio (MATTR). *Journal of Quantitative Linguistics*, 17(2), 94–100. DOI: https://doi. org/10.1080/09296171003643098
- Jänicke, S., & Scheuermann, G. (2017). On the Visualization of Hierarchical Relations and Tree Structures with TagSpheres. In: Braz, J, et al. (Eds.), *Computer Vision, Imaging and Computer Graphics Theory and Applications*. Cham: Springer International Publishing. pp. 199–219. DOI: https://doi.org/10.1007/978-3-319-64870-5_10
- Juršic, M, et al. (2010). Lemmagen: Multilingual Lemmatisation with Induced Ripple-down Rules. *Journal of Universal Computer Science*, 16(9), 1190–1214.

9

- Manning, C. D., Raghavan, P., & Schütze, H. (2009). An Introduction to Information Retrieval. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/CB09780511809071
- McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A Validation Study of Sophisticated Approaches to Lexical Diversity Assessment. *Behaviour Research Methods*, 42(2), 381–392. DOI: https://doi.org/10.3758/BRM.42.2.381
- Péter, R., Szántó, Zs., Seres, J., Bilicki, V., & Berend, G. (2020). AVOBMAT: a digital toolkit for analysing and visualizing bibliographic metadata and texts. In: G. Berend, G. Gosztolya & V. Vincze (Eds.), XVI. Magyar Számítógépes Nyelvészeti Konferencia. Szeged: Szegedi Tudományegyetem, Informatikai Intézet, pp. 43–55.
- Péter, R., Szántó, Zs., Seres, J., Bilicki, V., & Berend, G. (2022). Az AVOBMAT (Analysis and Visualization of Bibliographic Metadata and Texts) többnyelvű kutatási eszköz bemutatása. *Digitális Bölcsészet*, 4, 3–28. DOI: https://doi.org/10.31400/dh-hun.2021.4.3530
- Rudi, L. C., & Vitányi, P. M. B. (2007). The Google Similarity Distance. *IEEE Transactions on Knowledge* and Data Engineering, 19(3), 370–383, https://arxiv.org/pdf/cs/0412098v3.pdf. DOI: https://doi. org/10.1109/TKDE.2007.48
- **Significant text aggregation.** Available at https://www.elastic.co/guide/en/elasticsearch/reference/8.0/ search-aggregations-bucket-significanttext-aggregation.html [Last accessed 13 October 2023].
- **SpaCy Models and Languages.** Available at https://spacy.io/usage/models [Last accessed 13 October 2023].
- Torruella, J., & Capsada, R. (2013). Lexical Statistics and Tipological Structures: A Measure of Lexical Richness. *Procedia: Social and Behavioral Sciences*, 95, 447–454. DOI: https://doi.org/10.1016/j. sbspro.2013.10.668

Péter et al. Journal of Open Humanities Data DOI: 10.5334/johd.175

TO CITE THIS ARTICLE:

Péter, R., Szántó, Z., Biacsi, Z., Berend, G., & Bilicki, V. (2024). Multilingual Analysis and Visualization of Bibliographic Metadata and Texts With the AVOBMAT Research Tool. *Journal of Open Humanities Data*, 10: 23, pp. 1–10. DOI: https://doi.org/10.5334/ johd.175

Submitted: 16 October 2023 Accepted: 18 December 2023 Published: 07 March 2024

COPYRIGHT:

© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/ licenses/by/4.0/.

Journal of Open Humanities Data is a peer-reviewed open access journal published by Ubiquity Press.

]u[<mark></mark>